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Abstract

Total varianceis a statisticaltool developed for improved estimatesof frequency stability at

averagingtimesup to half the test duration. As a descriptivestatistic,Total varianceperformsa

decomposition of the samplevarianceof the frequency residualsinto components associatedwith

descending frequency octaves. As an estimator of Allan variance, Total variance has modest

bias, greater degreesof freedom, and lessermean square error than the standard estimator.

1 Introduction and conclusions

Almost by definition, there can never be enough data when making long-term stability measure-

ments of clocks and frequency standards. Having collected data during a time period 2’, we have

to accept a tradeoff between averaging time -r and confidence in the estimate bv (~, 7’) of Allan

deviation cry(7). To improve this tradeoff, Howe, Allan, and Barnes [1] introduced the notion of

using all the available overlapping samples of the increment of ~-average frequency. Of course, for

the largest averaging time r = T/2 there is only one such sample, the change in average frequency

from the first half of the run to the second. The resulting estimate C?u(T/2, T) often appears to be

unrealistically low. An example can be seen in Fig. 1, the results of a test run of a pair of hydrogen

masers at JPL’s Frequency Standards Laboratory.
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Two reasons for the droop at the right end can be given. First, if the increments of the

frequency residuals are modeled as Gaussian random variables with mean zero, implying no overall

linear frequency drift, then d; (T/2, T) is proportional to a chi-square random variable x; with one

degree of freedom. The distribution of such a random variable is heavily skewed toward values lower

than its mean value o; (T/2). This can be seen from Fig. 2, which shows the probability density

of the the random variable Q = loglo [&V(T/2, T) /av (T/2)]. The probability that Q <0 is 0.68,

more than twice the probability that Q > 0, and the left tail is much heavier than the right tail.

Second, to prevent frequency drift from masking the long-term fluctuations, it is common practice

to remove an estimate of overall linear drift from the data; in this case, d; (T/2, T) is likely to be

reduced because drift removal tends to match the earlier and later frequencies. After drift removal,

b; (T/2, T) still has one degree of freedom, so is subject to both effects.

In an effort to reduce these effects on the measurement of a; (7) for large ~, the notion of Total

variance was developed over the last few years in a sequence of papers [2][3][4][5]. The initial idea

is illustrated by Fig. 3, which shows seven cyclic shifts (modulo T) of the uppermost plot, the

frequency sampling function for estimated Allan variance at r = T/2: this terminology means that

the frequency residuals y (t) are multiplied by this function and summed, giving a linear functional

whose square, when properly scaled, is 6; (T/2, T). This sampling function, which is odd about

T/2, picks up the odd part of y (t) and rejects the even part. lf by chance or design (from the two

effects discussed above) it should happen that y (t) tends to be even about T/2, then the output of

the functional could be much smaller than a practical notion of the size of the long-term frequency

variations. In this situation, it makes sense also to apply the even sampling function labeled by

T/4, which picks up the even part of y (t) and rejects the odd part, The sum of the squares of these

two linear functional of y (t) can be expected to have better properties as a measure of long-term

stability than the square of either one alone.

Having admitted one T-cyclic shift of the sampling function, we might as well admit all the

others, especially if we want to improve on the fully overlapped unbiased estimator b; (~, T) of Allan

variance [1], henceforth called the standard estimator, for averaging times ~ that are less than T/2.

The standard estimator is the scaled, mean-square output of the linear functional generated by all

the available time shifts of the a; (~) sampling function, h, (t)= –1 for O < t < ~, 1 for 7< t < 2~,

that fit over the data g (t) , 0 S t < T; see (5) below for a formula that applies to discrete-time

data. The initial version of Total variance for -r is the scaled mean-square output of the linear

functional generated by all the possible T-cyclic shifts of h, (-t). (For ~ = T/2, half the sampling
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functions are redundant because they are the negatives of the other half.)

This version of Total variance enjoyed some success as an estimator of Allan variance with

reduced variability and sensitivity to drift removal [2][3], although it seemed to have a problem of

increased variability for data dominated by random walk FM. The same estimator can be obtained

by fixing the sampling function h, (t) and shifting the data cyclically modulo 2’, or, what is the

same, by applying hr (t) as a linear time-invariant filter to an input obtained by extending the

original data y (t) periodically with period T. If y (t) , 0 < t s T, is viewed as a finite piece of

an ergodic process, then its Z’-periodic extension can sometimes be regarded as a substitute for

lack of knowledge of the data outside [0, T] [6]. On the other hand, a piece of a random walk, if

continued periodically, has a large random discontinuity at the data interfaces O and 2’, untypical

of the process as a whole; its effect on the h~ (t) functional cannot be neglected, even for small

~. This problem of mismatched endpoints was solved by the technique of reflecting the data about

both endpoints, resulting in a virtual dataset y# (t) that can be extended to a 2T-periodic sequence

consisting of alternating forward and backward copies of y (t). The lower plot of Fig. 4 shows a

portion of yx (t) about 3 times as long as the original y (t) in the middle section. The current

version of Total variance is defined as the scaled mean-square output of the h~ (t) filters acting on

this new sequence.

The intent of the present paper is to give a precise definition of Total variance and an account

of some of its properties. We abbreviate Total variance for -r and T as Totvar (-r,2’) or Totvar (7)

(pronounced t~t ‘-v~r). The square root of Total variance is called Total deviation (Totdev). The

results given here fall into two classes.

Total variance as a descriptive statistic. Both Totvar (T, T) and d; (~, T) are statistics, that

is, they are functions only of the data at hand, By a descriptive statistic we mean a statistic that

has something valuable to say about these data, regardless of any stochastic model that might be

fitted or any assumptions about how the data might have evolved outside the interval of observation.

Simple examples are sample mean and sample variance. In Section 3 we show that Total variance

can be used to carry out an analysis of variance, an exact decomposition of the sample variance s;

of the frequency residuals y~ = y (m-o), where To is the sample period. In particular, Totvar (2~~o)

(when resealed) can be regarded as the portion of s; to be associated with the octave frequency

band 2–~-2/To < v < 2-~–l/70. Thus, after evaluating Totvar (r) for 7 = To,2~o,. . . , 2~70, one can

tell how much of the sample variance is yet unaccounted for, and associate the low-frequency band

O < v < 2–j–2/T0 with the remaincler. Analysis of sample variance is a central theme in statistics;
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an exact decomposition is highly desirable because it accounts for all the observed variance in the

data. The periodogram does such, as do most spectrum estimators and other decompositions, but

the standard estimator d; (~, T) of Allan variance does not [7].

Total variance as an estimator of Allan variance. Presented below are results for the

mean and variance of Totvar (~, T) in the presence of three power-law FM noises: white FM, flicker

FM, and random walk FM. For white FM we find that Totvar (~, 2’) is an unbiased estimator of

a; (7) for O < r ~ 7’, The bias of Totvar (T, T) at T = 2’/2 is –24Y0 for flicker FM and –37.5Y0

for random walk FM, and has the simple form a~/T for O < ~ S 2’/2. (These biases apply to a2,

not o.) The equivalent degrees of freedom (edfi see (22) below) of Totvar (T, 7’) is always greater

than that of 6; (T, T): for T = T/2, the edf of Total variance is 3 for white FM, 2.1 for flicker FM,

and 1.5 for random walk FM, as opposed to 1 for the edf of the standard estimator. Moreover, the

edf of Totvar (~, 2!’), O < ~ S T/2, can be well approximated by first-degree polynomials in T/T for

each noise type. The mean square error of Totvar (~, 2’) is less than that of b; (~, T), even though

the former is biased and the latter is not. Confidence intervals for a; (~) based on a chi-square

assumption for Totvar (~, T) can easily be constructed; these will be tighter than those based on

i?; (~, 7’), and there is evidence that such confidence intervals are conservative.

In summary, Total variance is presented as a tool for squeezing a modest amount of extra

information about long-term stability from a dataset of clock residuals, information that is often

obscured by the standard All an variance estimator for T at or near T/2. Analyzing frequency

stabllity accurately in long term has been problematic even for experienced users. The properties

of Total variance presented here suggest that it uses the available data more efficiently than the

standard estimator for long-term characterizations. Confident of these properties, the authors

expect to see wider usage of this tool.

2 Definition of Total variance

The purpose of this section is to give a precise definition of Totvar (~, T) for an lVZ-point time-

residual record with sample period TO. In the following description, the indices m, n, and IVz are

related to time by T = nnj, i! = i!o+ n~o, and T = (IVz – 1) TO,where to is the time origin and

without loss may be made equal to O.

We start with time-residual data xl, . . . , ZjVz,with normalized frequency residuals yn = (zn+ 1 —Zn) /TO,

l<n<Ny=Nz – 1. Extend the sequence y~ to a new, longer virtual sequence @ by reflection
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as follows: for 1 s n < NY let y? = y~; for 1 s j s NV – 1 let

y~–j=yj> ~$,+j ‘~Nu+l–j. (1)

An equivalent operation can be performed on the original time-residual sequence Zn to produce an

extended virtual sequence x; as follows: for 1 S n < NZ let x?/ = Xn; for 1 s j ~ NZ —2 let

# = 2x1 – xl+j~ ‘Zz+j
‘1–j = 2xN= —xNz–j . (2)

This operation, illustrated in Fig. 4 by the record used for Fig. 1, is called extension by reflection

about both endpoints. The result of this extension is a virtual data sequence x~, 3 – N= < n <

2NZ – 2, having length 3NZ – 4 and satisfying @ =

We now define
( #
%+1 — )

x~ /ro,3– Nz<n<2Nz–3.

1
N.–1

Totvar (m, Nz, 7.) = E(
~#

)

2
– 2X: + X:+m ,

2 (m70)2 (N. – 2) .=2 n—m (3)

for 1 ~ m ~ N. – 1. Note that r is allowed go to (NZ – 1) To instead of the usual limit of

l(NZ – 1) /2] 7.. Total variance can also be represented in terms of extended fractional frequency

residual averages by

where ji~ (m) =

Totvar (m, NY + 1, 7.) = ‘ ~ [37 (m) -~y-m (m)]2,
2(% – 1) n=z

(4)

( Xf+rn -q /(mm)

The notations Totvar (~, 2’) and Totvar (7) are to be regarded as abbreviations for Totvar (m, N., To).

2.1 Remarks

● For comparison, the standard Allan variance estimator, which we have been abbreviating as

d; (7, 2’), is actually given by

1
N. –2m

6; (m, Nz, 7_o)= ~ [Vn+m(m) -% (m)]2,2 (Nz – 2m) ~=1
(5)

where 1 s m < NZ/2, an (m) = (Zn+m – x.)/ (m~o).

● Total variance, like Allan variance and its conventional estimators, is invariant to an overall

shift in phase and frequency; that is, if a first-degree polynomial ~ + Cln is added to the

original data set Xn, then Total variance does not change,
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● It is possible to program Total variance without creating an extended data array in memory

[5, Eq. (9)].

● To simplify the scaling of Total variance relative to the decomposition of sample variance that

it generates (see (17)–(19) below), one might wish to use IVz – 1 in place of the denc]minator

N. – 2 in (3), and NV in place of the denominator NY – 1 in (4).

● In Section 3.3, the definition of Total variance is extended to arbitrarily large m.

3 Analysis of variances

3.1 Multiresolution scheme

The variance decomposition properties of Allan variance and Total variance can be derived from

an overlapped Haar wavelet transform [8]. The scheme consists of a ladder of linear time-invariant

filters (Fig. 5), which, acting on an input sequence y~ with sample period To, decomposes the

original frequency range O < v < 2–1/~o into successively lower octave bands; each stage leaves

a smoothed version of the input for further analysis. The ladder is built from two simple filters:

a lowpass filter Go with impulse response [go, gl] = ~ [1, 1], and a highpass filter Ho with impulse

response [ho, hl] = ~ [1, —1]. The corresponding transfer functions,

Go (v) = e-im”’o cos (nV~O), Ho (v) = ie-inv’” sin (TVTO),

satisfy

IGo (V)12+ [HCI(V)[2= 1. (6)

Let F be a filter with impulse response .f~ and transfer function F (v). For any positive integer

(r) _r, define the r-upsampled version of I’ to have an impulse response f:) such that f~~ — ~n for all

‘“) – () otherwise; in other words, r – 1 zeros are inserted between successive terms. Then, and jj —

transfer function of the upsampled filter is F (w).

For-j = 1,2,... let Gj and Hj be the 2~-upsampled versions of Go and Ho. These filters

are applied to yn according to the scheme shown in Fig. 5. Its jth stage has output sequences

vj,n = Aj~n and wj,n = Bjy.7 where AO = Go, BO = Ho, and

Aj = GjGj-l . . .Go, Bj = HjGj-l “ . .Go = HjAj_l (7)
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for j z 1. One can show by induction that Aj is a moving-average filter with impulse response

2-~-1 [1,. . . . 1] (2~+1 ones), a lowpass filter with bandwidth 2-~-2/7-o. Then, by (7), Bj has

impulse response 2–~–l [1,. . . , 1, –1,. . . , –1] (2~ ones, then 2~ minus-ones), which is 2–1/2 times

the filter associated with u; (2~7-0). This filter is an approximate bandpass filter for the octave

band 2–~–2/7-o < v < 2-~-I/-r. [9]. The squared frequency responses of Aj and Bj are given by

As we have seen, the approximate passbands of the filters Bo,... , B~, A~ form a partition of

the original frequency domain O < v < 2– 1/~o. The variance decompositions discussed below follow

from a precise counterpart of this statement for the squared frequency responses, which satisfy the

frequency-domain decomposition

[A~ (U)12+ ~ [Bj (V)12 = 1.

j=l)

(8)

This equation can be proved by induction on J from (6) and (7) (or from the identity sin4 x =

sin2x – ~ sin2 2x). If u-. is not an integer, then ]A~ (v) 12~ O as J --i co, and it follows from (8)

that

~ [Bj (V)12 = 1) (9)
j=o

(lo)

Eq. (9) says that the squared frequency responses associated with Allan variance for 7 = 2~7-osum

to 2, except at zero frequency and its aliases.

3.2 Ensemble variance

Before deriving the sample variance decomposition property of Total variance, it is useful to see

how the analogous property of Allan variance is derived from the frequency-domain decompositions.

Let yn be a stationary random process with variance a; and one-sided spectral density SV(v).

Multiplying (8)–(10) by SV(v) and integrating over O < v < 2–1/7., we obtain

7
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If yn has stationary first increments but is not stationary, like flicker FM and random-walk FM,

then wj,n is stationary, vj,n is not stationary, and the frequency-domain integrals giving at and O;J

are infinite, as are the infinite series in (11) and (12).

3.3 Sample variance

From the random-process setting we return to the consideration of a finite data sequence yl, . . . , y~

with sample period To. Before invoking the extension procedure of Total variance, let us consider

temporarily a simpler periodic extension with period N, that is, we agree that yn+~ = yn for all

integers n. The sample mean mV and sample variance s; of y~ are conveniently expressed in terms

of its discrete Fourier transform (DFT), given by

N

Yk= ~ ynE?-i2nkn1N,
n=l

and also indicated by the notation y~ ~ Yk. We have mv = Yo/N, and

(13)

by Parseval’s theorem in the DFT setting.

Let F’ be a filter with finite impulse response jn and transfer function F (v). Define jn (N)

to be the sum of jj over all j such that mod (j, N) = n. Some facts about the periodic sequence

fm (N) must now be set down. First, if yn is N-periodic, then so is Fyn, and we have

N

F“yn = ~ fj (N)Y.–j,

j=l

which expresses a circular convolution; the summation can be taken over any period. Second,

f. (N) ~ F (%), where % = k/ (N~o). Therefore, Fyn ~ F (vk) Yk.

Let the input to our multiresolution scheme be an N-periodic sequence yn. Then all the output

sequences are periodic, and from the previous remarks it follows that ~j,n ~ Aj (Vk) y~ ~ Wj,n ~

Bj (v~) Yk, and

(14)

Combining (14) and (13) with the frequency-domain partitions (8)-(10) yields the analogs of (11)-
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●

(12) for sample variances:

(15)
j=o j+)

cm
~2 _
VJ— x S:j . (16)

j=J+l

Observe also that WLVj= mv, mWj = O because Aj (0) = 1, Bj (0) = O.

Returning to the Total variance setting of Section 2, we set N = 2NV and replace [~1, . . . . yN]

byy#= [yl,... ,yATV,y~y,... , Y1], which, if extended to a sequence with period 2NV, agrees with

the definition given in Section 2. Because of the symmetry of the y~ about their midpoint and the

symmetry of the filters Aj and Bj, the terms in the various sums of squares occur in pairs. As a

2 the sample variance of [yl, . . .result, s~x = Sy, , y~v], s~j is the sample variance of the 2~+1-moving

average of y~, and

NV–-l
— Totvar (2~~o) .

‘:1 = 2NV
(17)

The expression (4) is contrived so that only NV – 1 distinct nonzero terms are used, Although

Totvar was previously defined only for m < NY, (4) retains meaning for all m if y~ is extended

periodically as far as needed.

To simplify the equations of analysis of variance involving Totvar, it is convenient to define a

“Remainder variance,” Remvar (m~o), as 2NV (NY – 1)‘1 times the sample variance of 2NV succes-

# Thensive values of the moving m-averages of the 2NV-periodic sequence yn .

NV–-l
– —Remvar (TO),

‘; – 2NV
(18)

s2_ N-1
V3– ~Remvar (2j+1To) . (19)

v

The square root of Remainder variance is called Remainder deviation (Remdev).

In this setting, the variance decompositions (15)-(16) become

J
Remvar (To) = Remvar (2J+lro) + ~ Totvar (2~70) , (20)

j=o

m

Remvar (2J7-0)= ~ Totvar (2~-ro) , (21)
j=J

for J ~ O. In other words, the resealed sample variance of yn is the sum of all the Totvar (2~70),

and Remvar (2J+l To) indicates how much of the sample variance has not yet been accounted for

by Totvar (2~7-o), j s J.
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3.3.1 Remarks

● Total variance is the first “modern” estimator of Allan variance to mimic its ensemble variance

decomposition properties (11)-(12); moreover, the sample variance decompositions (20)-(21)

apply to any finite data set.

● Because higher order Daubechies wavelet filters [10] also satisfy (6), the above development

extends easily to higher order wavelet variances (Allan variance is essentially twice the Haar

wavelet variance). These higher order wavelet variances are suitable substitutes for some

of the variations on Allan variance that have been proposed and studied in the literature

(modified Allan variance, for example). For details, see [11].

● As mentioned above, Totvar (~, 2’) can be computed for arbitrarily large T without taking

more data, but Totvar (~, T) for 7> T ought not to be regarded as an estimator of o-~(~). In

particular, if NY = 2K then Remvar (2~7-o) and Totvar (2~7-o)vanish for j 2 K + 1.

● See [7] for a discussion of analysis of sample variance by the non-overlapped estimator of

Allan variance.

3.3.2 Example

Figure 1 shows ~V(~, T), Totdev(7, T), and Remdev(~, T) for the hydrogen-maser record shown in

Fig. 4, with parameters N. = 1727, q = 1024.1s, T = 1.77 x 106s. The averaging times include

2~To, O ~ j < 11, and also include T/2 = 8.84 x 105s. Relative frequency drift, –1.81 x 10-15

per day, was estimated from the data by the “4-point w“ method [12] and removed, As a result,

6V (2’/2, T) becomes severely depressed, a common consequence of drift removal. (It would have

been identically zero if the “3-point Z“ drift estimate [13] had been used.) On the other hand,

Totdev(~) shows no depression until ~ exceeds 7’/2. The flatness of Remdev at the lower T means

that the first several values of Totvar do not contribute much to the sample variance of the frequency

record (essentially $ Remvar (TO)). At ~ = 21°T0, Remdev and Totdev are almost equal, which

indicates that Remvar (21°TCI)is the last significant component of the sample variance.

The error bars, which are confidence intervals for au (~) based upon Totdev(~, T), are discussed

below.
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4 Totvar as Allan variance estimator

Although Total variance can stand on its own as a descriptive statistic that performs an analysis

of variance on a data set, its usefulness for time and frequency measurement is based mainly on

its statistical properties as an estimator of Allan variance under assumptions about the underlying

random noise processes. Because we are interested mostly in long-term frequency stability statistics,

and for mathematical convenience, we trest only the power-law FM noise processes that are likely

to dominate long-term measurements: white FM, flicker FM, and random walk FM (WHFM,

FLFM, RWFM). With these assumptions, the properties of Totvar (m, NV + 1, To) depend mainly

on the ratio m/Nv = I-/7’ for large m and NV; it is convenient, then, to approximate Totvar (~, 1’)

by a continuous-time analog in which sums involving Zn are replaced by integrals involving x (t),

modeled by a power-law process with spectral density proportional to va–2 for O < v < cm (no

high-frequency cutoff) and a = O, – 1, –2 [5], The theoretical computations also assume that there

is no underlying linear frequency drift, i.e., that the second increments of x have mean zero, and

that these increments are Gaussian.

4.1 Mean and variance

Although Tot al variance is most conveniently expressed as a function of the extended record x~ or

y~, each term of (3) can also be expressed as the square of a linear functional of the original data

sequence Zn or yn. These functional, though complicated by the foldover implicit in the extension

by reflection, are still second-order functional of the Zn, that is, they are invariant to time and

frequency shifts. (See [5] for formulas and illustrations of the sampling functions.) Therefore, it

is possible to compute the mean and variance of the quadratic functional that constitutes Totvar

in the presence of phase noise with stationary, mean-zero, Gaussian second increments. These

computations were performed by manipulations on the generalized autocovariances of the three

FM noise processes [14].

The mean E [Totvar (T, T)] is compared to O; (~); the variance is most conveniently

cated through the equivalent degrees of freedom (edf ), defined for a random variable V

communi-

by

(22)
2 (EV)2

eclf (V) =
var (V) “
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Table 1: Coefficients for computing the normalized mean T and edf v of Total variance for FM

noises. Tabulated also are the exact quantities for 7 = T’/2.

Noise a b c ‘7’(2’/2) v (2’/2)

WHFM o 3/2 o 1

FLFM 1/ (31n 2) 24 (ln 2)2 /n2 0.222 0.760

RWFM 3/4 140/151 0.358 5/8

The results can be expressed by the formulas

E [Totvar (7, T)]
r :=

cT;(T)

v := edf[Totvar (T, T)] s b: – c, t)<T~;,

3

2.097

1.514

(23)

(24)

where a, b, and c are given in Table 1. The values of ~ and v for the important longest-term case

-r = T/2 are also tabulated. The edf formula (24) is empirical, with an observed error below 1.2’ZOof

numerically computed exact values; the tabulated values of r (T/2) and v (T/2) are the exact ones.

As is obvious from their form, a and b were derived from theory; in particular, b is the limiting value

of (T/T)edf [b; (7, T)] for large T/~ [15]. The only coefficient that had to be chosen empirically was

c. These results were checked by simulations of Totvar (m, NZ, 7.), with NZ = 101. The simplicity,

accuracy, and range of applicability of (24) are striking in view of existing approximations for the

edf of 8; (~, T) [1][15][16]. Although Total variance is an estimator of greater complexity, some of

its statistical properties are simpler.

Fig. 6 compares Totvar (T, T) to the standard unbiased Allan variance estimator 6; (T, T) in

two different ways. The upper plot shows the ratio of the edf of the two estimators for the three

FM noises; the lower plot shows the ratio of their root-mean-square errors (~bia.s2 + variance) as

estimators of a; (7).

4.1.1 Remarks

●

●

Because of the continuous-time analog used for the theoretical calculations, (24) should be

used only if T z 8T0 for white FM, 3-r. for flicker FM.

The simple, exact form (23) for the mean of Totvar can be interpreted as a scaling property

of power-law noise. It turns out this way because the shapes of the sampling functions for

Total variance [5] depend only on 7 when ~ S T/2. For T/2 < T < T the sampling function
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shapes depend also on T; yet, it is noteworthy that (23) persists all the way to T, but only

for white FM and random walk FM.

● For white FM, Totvar (T, T) is an unbiased estimator of a; (~) for T < T. This fact appeared

as an outcome of algebraic manipulations; unfortunately, the authors cannot give a simple

reason why it is so. The edf result (24) for white FM, though obtained numerically, seems to

be exact for T < T/2 and T = T. No calculations of edf were performed for T/2 <7 <T.

4.2 Confidence intervals

In the tradition of time and frequency statistics, it is customary to derive confidence intervals for

frequency stability on the basis of the assumption that the probability distribution of a frequency

stability estimator V, when scaled appropriately, follows the chi-squared distribut ion with the same

edf as V [I]. Fix T, and write V = Totvar (T, T), CJ2= Oj (T). Let r = E (V) /u2, v = edf (V),

given by (23)–(24) in the presence of one of the three FM noises. Then the random variable

(25)

has the same mean and edf, namely v, as a x; variable does. Presume for the moment that X has

a x; distribution. For O S PI < P2 < 1 let cl and & be the corresponding levels of this distribution.

(A simple approximation algorithm for x; levels can be found in [17].) Then (l < X < (2 with

probability p = p2 – pl; a rearrangement gives the confidence statement that

(26)

with probability p. Observe that the bias of V has been allowed to push the confidence interval

upwards (when r < 1).

The error bars in Fig. 1, shifted horizontally for visibility, are 90% confidence intervals for

OV(T) as computed by this method (P1 = 0.05, p2 = 0.95) under the assumption of flicker FM

and random walk FM noise models. Both sets of error bars suggest the hypothesis that random

walk FM is the dominant noise type for 105s < T < 106s, although a flicker FM hypothesis is not

ruled out. A longer test run (T = 4.23 x 106s) of the same pair of standards supports the random

walk hypothesis, with fig (7, T) increasing like T1/2. On the other hand, the longer run has a sharp

frequency step of about 4 x 10-14, untypical of the shorter run (Fig. 4), so that we hesitate to

declare a successful characterization.
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We note that (23)-(24) have not been shown to be accurate when estimated frequency drift

is removed, as was done for Fig. 1. The authors have not carried out the required theoretical

computations, which depend on the method of drift estimation and are more intricate than before.

It seems clear, though, that the effect of drift removal on Total variance is less than its effect on

conventional estimators of o; (~), which tend to be severely depressed for 7 near T/2 [3].

The x; assumption for Total variance has been investigated, for ~ = 7’/2 only, by simulation of

the three FM noise types [5]. The empirical distributions of X as defined by (25) were observed to

have heavier left tails than those of the corresponding x; distributions. If this turns out to be true

in general, it means that the upper ends of confidence intervals (26) based on the x; distribution

are pessimistic. For now, use of the x; distribution for this purpose seems to be a conservative

policy.
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Figure 1: Sigma-tau plot of &y (standard estimate of Allan deviation), Total deviation, and Re-

mainder deviation for a pair of hydrogen masers. The error bars are 9070 confidence intervals for

Allan deviation based upon Total deviation.
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